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Abstract

Background: The detection of subtle cognitive impairment in a clinical setting is difficult. 

Because time is a key factor in small clinics and research sites, the brief cognitive assessments that 

are relied upon often misclassify patients with very mild impairment as normal.

Objective: In this study, we seek to identify a parsimonious screening tool in one stage, followed 

by additional assessments in an optional second stage if additional specificity is desired, tested 

using a machine learning algorithm capable of being integrated into a clinical decision support 

system.

Methods: The best primary stage incorporated measures of short-term memory, executive and 

visuospatial functioning, and self-reported memory and daily living questions, with a total time of 

5 minutes. The best secondary stage incorporated a measure of neurobiology as well as additional 

cognitive assessment and brief informant report questionnaires, totaling 30 minutes including 

delayed recall. Combined performance was evaluated using 25 sets of models, trained on 1,181 

ADNI participants and tested on 127 patients from a memory clinic.

Results: The 5-minute primary stage was highly sensitive (96.5%) but lacked specificity 

(34.1%), with an AUC of 87.5% and diagnostic odds ratio of 14.3. The optional secondary 

stage increased specificity to 58.6%, resulting in an overall AUC of 89.7% using the best model 

combination of logistic regression and gradient-boosted machine.

Conclusion: The primary stage is brief and effective at screening, with the optional two-stage 

technique further increasing specificity. The hierarchical two-stage technique exhibited similar 

accuracy but with reduced costs compared to the more common single-stage paradigm.

1Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database 
(https://adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or 
provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: 
https://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
*Correspondence to: Michael J. Kleiman, PhD, Comprehensive Center for Brain Health, University of Miami Miller School of 
Medicine, 7700W Camino Real, Suite 200, Boca Raton, FL 33433, USA. mjkleiman@miami.edu. 
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INTRODUCTION

Alzheimer’s disease and related dementias (ADRD) may be difficult to detect in clinical 

research and general clinical practice, especially in prodromal stages (i.e., mild cognitive 

impairment or MCI) where cognitive changes are subtle and can be mistaken for 

normal aging [1]. Examining biomarkers characteristic of ADRD such as amyloid or 

phosphorylated tau via spinal fluid, blood tests, or PET scans support the presence 

of underlying pathology without specifically determining current cognitive status of the 

individual [2]. Routine screening for MCI and ADRD to detect early impairment is not 

commonly utilized in primary care due to a number of factors including time and effort, 

challenges with administering and interpreting brief cognitive tests, and lack of screening 

guidelines [3-5]. Similar challenges exist for screening in clinical trials, especially for MCI 

cases.

While a recent approval of therapeutics that seek to delay onset or slow progression has been 

controversial [6], symptomatic medications can delay disease progression and mortality 

[7] and nonpharmaceutical and lifestyle interventions may provide cognitive or functional 

benefits [8, 9]. Other benefits of screening include the ability to change behaviors or 

improve health outcomes [10] and advanced care planning. Thus, screening for and early 

detection of MCI and ADRD has the potential to offer clinical benefit today, and the 

development of effective programs may enhance clinical research and patient selection for 

emerging disease-modifying medications in the future.

Brief cognitive assessments, including the Montreal Cognitive Assessment (MoCA) [4] and 

Mini-Mental State Exam (MMSE) [11], are effective at identifying cognitive impairment; 

however, they may not be as sensitive for MCI, particularly non-AD forms [5]. Self-

report screening instruments, including the Quick Dementia Rating Scale (QDRS) [12], 

Everyday Cognition Scale (ECog) [13], and Functional Activities Questionnaire (FAQ) [14], 

can identify subjective complaints and early changes in instrumental activities of daily 

living (IADL). Given sociodemographic and educational biases inherent in many cognitive 

assessments, global screening measures such as the QDRS and ECog may be more sensitive 

to earlier stages of impairment [15] and provide measures of changes in cognitive and 

functional abilities over time [16]. However, the self-report and informant-report measures 

are subjective, and cannot be used on their own to determine any objective measure of 

cognitive performance [17]. As a result, screening for cognitive impairment may benefit 

from incorporating both an objective cognitive assessment component as well as self-report 

and/or informant-report measures, to better identify individuals with early impairments and 

reassure individuals with a low likelihood of cognitive impairment.

Because clinical practices and research centers outside large tertiary academic medical 

centers may not have the available time, effort, and or trained staff to conduct 
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comprehensive cognitive evaluations, there often is an overreliance on these brief screening 

measures that may potentially miss detection of up to half of true cases of cognitive 

impairment [18, 19]. This can have consequences on clinical care and on referral for 

clinical trials. To address these unmet needs, two strategies can be utilized: automating 

interpretation, and simplifying the assessments.

Automating interpretation using clinical decision support systems

Clinical decision support (CDS) systems help health care professionals by performing 

various functions including giving reminders, interpreting tests, assisting diagnosis, and 

alerting of medication interactions. CDS systems can effectively reduce healthcare costs, for 

example by reducing unnecessary laboratory testing [20] or aiding physicians in differential 

diagnosis [21]. Studies implementing CDS systems have demonstrated improved diagnostic 

accuracy and documentation, as well as reduced diagnostic error [21, 22]. CDS systems 

can also improve screening for common chronic diseases such as cancer, kidney disease, 

obesity, abdominal aortic aneurysm, diabetes, osteoporosis, hepatitis B virus, depression, 

and dementia, leading to improved rates of diagnosis [23, 24]. There is clear potential for 

CDS systems to help close the gap between healthcare provider knowledge and performance 

for a more robust clinical decision-making system.

Early and accurate detection of ADRD is vital to early case ascertainment and recruitment 

for clinical trials and can be aided by CDS systems. Studies of CDS systems’ effectiveness 

at detecting dementia in primary care identify significant improvements in rates of reported 

dementia cases [25] as well as physician confidence in differential diagnosis [26], compared 

to when the CDS was not utilized. Machine learning is also useful in CDS systems for 

feature selection as well as model development by optimizing model inputs and allowing 

for complex data relationships in modeling [27]. A review of the contribution of machine 

learning in classification of MCI and ADRD using the Alzheimer’s Disease Neuroimaging 

dataset reported overall improvement in classification and prediction accuracy, especially 

in challenges involving MCI patients [28]. Furthermore, a study using a machine learning-

based dynamic CDS system for supporting the diagnosis of dementia achieved an excellent 

classification accuracy of 92% [29].

Cost-sensitive cognitive screening

In addition to increasing accuracy, the main benefit of CDS systems is to decrease monetary 

and time costs associated with screening and subsequent diagnosis. Many CDS systems 

scour electronic medical records (EMR) for treatment regimens, physician notes, and/or the 

patient’s medical history. These datapoints are able to identify patients who may be at risk 

for a particular disorder with sufficient accuracy [30, 31], however these systems require 

the EMR to contain sufficient detail to determine that risk. In the case of MCI and ADRD, 

studies that use EMR for risk assessment often rely heavily on comorbidities that indicate 

poor health, which then secondarily indicates risk of ADRD. No method for identifying 

latent factors of cognitive impairment itself within EMR, and not just determining risk 

factors, has been successful to date. Thus, to properly screen for prodromal impairment, 

components that directly assess cognitive and daily functioning must be incorporated into 

the medical record [32].
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Many brief cognitive screeners, including the MoCA [4] and MMSE [11], require licensing 

and training for use, and can misclassify individuals with very mild impairment as not 

impaired [5], particularly individuals from underrepresented and underserved communities. 

While combining these brief cognitive screeners with a self-report screener such as the 

QDRS or FAQ can improve overall detection accuracy, producing a classification of “screen 

positive” or “screen negative” based on the results of multiple tools introduces a degree of 

subjectivity on the part of the clinician doing the interpretation.

Cost-sensitive CDS systems have also been shown to greatly improve screening accuracy 

while minimizing assessment time [33, 34]. To minimize time cost, the components 

examined are carefully curated using feature selection machine learning algorithms [35], 

which serve to identify the most useful features within a given set of assessments. In 

previous work, four assessment components were found to detect impairment at 94.5% 

sensitivity within 15 minutes of active clinician time: delayed narrative recall, trailmaking 

B, and memory questions reported by both the patient and an informant [36]. These 

components were also found to be similarly highly valued in other feature selection studies, 

highlighting the utility of patient and informant reported measures [33] as well as the benefit 

of both a delayed memory component [34, 37] and executive-visuospatial component [37]. 

Some studies focus on minimizing total number of assessments while maintaining similar 

discriminability of impairment status to larger assessment counts [38] while other studies 

have placed greater focus on minimizing costs over measuring cognitive performance, 

determining that self-report questions alone can produce an impressive area under the ROC 

curve (AUC) of 0.865 when classifying a patient using the Clinical Dementia Rating (CDR) 

scale [33]. However, applying these particular neuropsychological tests in routine clinical 

practice may have practical and cost limitations.

Multi-stage screening

In this study, we evaluated the combined efficiency of cost-sensitive screening and 

automated interpretation with the efficacy of robust assessments by developing a multi-stage 

screening paradigm capable of being integrated into CDS systems for use in primary 

care and research. In contrast to a single stage, two or more hierarchical stages enable 

easily-collected screening assessments (e.g., questionnaires, brief assessments) to be first 

examined prior to those that require more time and effort to collect (e.g., neuropsychological 

testing, MRI). Previous studies have examined multi-layered prediction algorithms, either 

by first focusing on binary then ternary classification [39] or by first screening then 

determining progression risk [40]; however, to our knowledge none have approached 

multi-stage screening through a cost-sensitive lens. If sensitivity is prioritized to minimize 

false-negatives, patients that screen negative at early stages could be safely excluded, and 

only those that are not clearly unimpaired would be recommended for additional screening 

procedure. This technique could empower smaller clinics and research sites to screen 

for cognitive impairment without expending unnecessary resources, and without requiring 

physicians to interpret disparate screening procedures. Patients who screen positive could 

then be further evaluated or referred to memory-care specialists for further diagnosis and 

management.
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We hypothesize that a two-stage screening paradigm, that uses progressively more in-depth 

screening components at each stage, will exclude more non-impaired patients after the final 

stage and misclassify fewer impaired patients overall than if only a single-stage algorithm 

was used on all patients. We aim to develop a parsimonious and brief primary stage that 

effectively screens early impairment, with an optional secondary stage that further excludes 

healthy participants while using more time-intensive and costly assessments. More in-depth 

diagnostic evaluation could then be recommended to more accurately identify impairment 

status, determine dementia etiology, and prompt management and/or treatment of MCI and 

ADRD when required.

METHODS

Participants

Two sets of participant data were used in this study: a research dataset for training and 

parameter optimization, and a clinical dataset for testing and providing output statistics.

Obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI), 1,181 participants 

(517 HC, 522 MCI, 142 AD) were used to train each set of models as well as in feature 

selection and hyperparameter optimization. The ADNI database (https://adni.loni.usc.edu) 

was launched in 2003 as a public-private partnership, led by Principal Investigator Michael 

W. Weiner, MD. The primary goal of ADNI has been to test whether MRI, PET, other 

biological markers, and clinical and neuropsychological assessment can be combined to 

measure the progression of MCI and early AD. While subjects in ADNI are voluntary 

research participants and thus are less diverse and more highly educated than those found 

in the general population, this data was useful as a training set as its participants are 

examined at dozens of testing centers across the globe yet are each administered roughly 

identical assessment regimens. The data was pulled from ADNI on April 22, 2020, and 

contained only baseline visits. Selected participants included those with normal cognition 

and no memory complaints, a diagnosis of mild cognitive impairment, and a diagnosis of 

Alzheimer’s disease. Participants with other comorbid dementia diagnoses were excluded. 

Also excluded were participants who did not complete their baseline visit and/or were 

missing any of the assessments that we examined in this study.

To test the models, 127 participants (41 HC, 59 MCI, 27 AD) from the Comprehensive 

Center for Brain Health (CCBH) were used. Unlike ADNI, the CCBH dataset is drawn from 

a clinical population with a focus on examining brain health, MCI, and ADRD. As a result, 

the makeup of the CCBH cohort is more representative of populations of real-world clinics 

and medical practices than the ADNI dataset despite having similarly limited racial and 

ethnic diversity, and thus serves as an effective group to test models for clinical decision 

support. The two datasets share many common features, with the main exception being that 

patient self-report of cognition and functioning is captured by the ECog in ADNI and by the 

QDRS in CCBH.

From both datasets, our inclusion criteria selected only participants with a CDR of 0 (no 

dementia), 0.5 (questionable or very mild dementia), or 1 (mild dementia), ensuring that the 

participants resemble those who would seek screening procedures for cognitive impairment. 
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Those with moderate to severe dementia (CDR 2 or 3) can be more readily identified as 

impaired, and thus were excluded from our screening procedure. As the CDR was only used 

for inclusion/exclusion criteria, it was not included in this study.

Two-stage architecture

The CDS system developed in this study is intended to primarily select out healthy controls, 

and identify ideal candidates for cognitive impairment screening, while minimizing time and 

effort costs. To achieve this, the system is given a two-stage hierarchical structure, where 

the primary stage is intended to screen out those with no impairment and the second stage 

is intended to further improve specificity after introducing additional assessments. While the 

primary stage thus prioritizes sensitivity over specificity, the second stage utilizes a multi-

model network [41], which allows for separate models each with their own set of features 

and hyperparameters to target either the impaired or nonimpaired class. This strategy 

enables the ability to fine-tune each model’s performance, as well as set individualized 

classification thresholds, to optimize the detection of impairment status. A visualization of 

the architecture can be seen in Fig. 1.

Feature selection

The BorutaSHAP v1.0.16 [42] selection algorithm, a model-guided wrapper in Python that 

utilizes Shapley values to improve accuracy, was used to select the most useful and effective 

assessments and assessment portions (“features”) within each of the model’s two stages, 

using a random forest classifier (scikit-learn v1.0.1 [43]) as its base model due to its general 

effectiveness. Each stage was provided a separate tailored list of features based on the 

intended functionality. Only one-fourth (25%) of the stratified training (ADNI) data was 

held for use in the feature selection process, to avoid leakage and subsequent overfitting in 

the model training phase.

As the primary stage is intended to identify healthy controls with minimal assessment time, 

only a handful of features were chosen to feed into the first feature selection algorithm. 

Each of these features require minimal time to administer (less than 2 minutes) and/or 

can be completed outside of the clinical visit (e.g., self-report questions). These included 

each component of the FAQ and its total, Trail-making Tasks A and B, the 5-word recall 

component of the MoCA, the orientation component of the MoCA, medical history of 

hypertension or stroke, educational attainment in years, and the patient’s age and sex. 

Self-report questionnaires that obtained the patient’s ratings of their memory, language, and 

attentional functioning, as well as their participation in activities within and outside the 

home, were also derived from ADNI’s ECog to match CCBH’s QDRS [12], including 

the domains 1) memory, 2) orientation, 3) judgement, 4) outside activities, 5) home 

activities, 6) language, and 7) attention. This questionnaire is referred to as the “QDRS-like” 

questionnaire, and both the total score and each of the seven components were included as 

features in the first feature selection algorithm.

The second stage incorporates a multi-model approach, allowing for two sets of features to 

each target one of the respective classes (impaired or non-impaired). Each feature selection 

algorithm was set to target each class, with recall (sensitivity) for that class used as the 
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optimized parameter. In addition to the features used in the previous stage, components were 

considered in this stage that require extra effort or time costs. These additional features 

include the rest of the MoCA components and its total score, a verbal fluency task (animal 

naming), informant-provided versions of the QDRS-like questionnaires, and hippocampal 

volume as assessed by structural MRI. A verbal learning task was also used (Rey auditory 

verbal learning in ADNI, Hopkins verbal learning in CCBH) both immediate and delayed 

recall; however, these two versions differed in both the number of words used as well as the 

number of repeats. To enable direct comparison, we standardized the word count for each.

The Boruta feature selection process was run a total of fifteen times: five times each for 

stage 1, stage 2 “impaired”, and stage 2 “non-impaired”. Features that were selected as 

important in at least four of the five runs per stage were selected for use in the model.

Optimization of parameters

Each stage of the system was examined using five types of models: a logistic regression 

(LR), a support vector machine (SVM), a random forest (RF), a gradient-boosted machine 

(GBM), and a three-layer feed-forward neural network (FFNN). Scikit-learn v1.0.1 [43] 

was used to create the LR, SVM, RF, and FFNN. The GBM was created using LightGBM 

v3.3.2 [44], as this implementation allows for categorical variables to be accounted for and 

improves model time-to-fit compared to scikit-learn’s version.

Optuna v2.10.0 [45] was used to select optimal hyperparameters for each model, leveraging 

its implementation of define-by-run dynamic parameter search spaces and efficient strategies 

for pruning. This optimization algorithm was first run to generate hyperparameters for the 

random forest used in the feature selection step using the same 25% of stratified training 

data. After feature selection was performed, optuna generated hyperparameters for each 

model based on the three feature groups: stage 1, stage 2 “non-impaired targets”, and stage 

2 “impaired targets”. From the available training data, the same 30% was set aside to be 

used for each of the three optimization steps. Thresholding analysis was also performed to 

identify ideal levels for determining a classification of “impaired” or “not impaired” based 

on the output probabilities, also performed on the 25% stratified training data.

Analysis

Characteristics of each dataset, as well as comparisons between datasets, were examined 

using either Analysis of Covariance (ANCOVA) with age as a covariate when variables were 

continuous, or Chisquared tests when variables were categorical. Each model was examined 

for sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), 

and area under the receiver-operating characteristic curve (AUC).

RESULTS

Participant characteristics

The sample from ADNI was comprised of 1,181 participants. There were similar numbers 

of men (594) and women (587) in the ADNI dataset, with a significantly greater proportion 

of women in the HC group (57.8%) than in the MCI (44.3%) and ADRD (40.1%) groups 
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(χ2(2,1181)= 11.51, p <0.001). The mean age for the ADNI sample was 72.3 ± 7.2 years. 

ADNI’s ADRD group (75.1 ± 8.2) was significantly older than the HC (72.0 ± 6.2 years) 

and MCI (71.9 ± 7.6 years) groups (F(2,1178) = 12.2, p < 0.001).

The sample from CCBH had 127 participants. There were more women (75) then men (52) 

in the CCBH dataset. While there were more women in CCBH’s HC group (75.6%) than 

the MCI (50.8%) and ADRD (51.8%) groups, the difference was not significant. The mean 

age of the CCBH sample was 72.7 ± 10.0 years. The HC group (67.6 ± 9.1 years) was 

significantly youngest, and the ADRD group (79.6 ± 8.7 years) was significantly oldest, 

with the MCI group (73.0 ± 9.2 years) significantly different from HC and ADRD (F(2,124) 

= 14.4, p < 0.001).

The Clinical Dementia Rating (CDR) sum of boxes scores (CDR-SB) were not significantly 

different between the ADNI and CCBH samples. Non-impaired participants in ADNI had a 

mean CDR-SB of 0.0 ± 0.1, and in CCBH 0.1 ± 0.2. Impaired participants had a CDR-SB 

of 2.1 ± 1.6 in ADNI and 2.2 ± 1.8 in CCBH. Additional differences between dementia 

severities within each dataset can be found in Table 1, and comparisons between ADNI and 

CCBH can be found in Table 2.

Primary stage

Out of the 28 features available, the Boruta feature selection algorithm identified ten total 

features for the primary screening stage (Table 3): the memory and language components 

of the QDRS-like self-report questionnaire, the “preparing paperwork” and “remembering 

appointments/occasions” questions of the FAQ, Trails A and B, the five-word recall and 

orientation components of the MoCA, the participant’s age, and the sum total of the seven 

QDRS-like components.

After identifying ideal hyperparameters for each model type, thresholding analysis revealed 

that a reduced threshold of 10% (default: 50%) for positive (“impaired”) class determination 

was ideal for maximizing sensitivity (impaired classification) at the expense of reduced 

specificity (not-impaired classification). This strategy maximizes the likelihood that 

impaired participants are recommended for further testing.

After training each of the five models using the ADNI data, they were then tested using the 

held-out CCBH data. In this primary stage, the LR model had the best balance of sensitivity 

(96.5% or 83/86) and specificity (34.1% or 14/41), followed by the SVM (97.7% sensitivity 

or 84/86, and 24.4% specificity or 10/41). Area under the ROC curve (AUC = 0.875) and F1 

score (F1 = 0.848) analyses supported that the LR was the most balanced choice. Using the 

LR as the selected model, this primary stage exhibited high diagnostic accuracy with a PPV 

of 75.5% and a NPV of 82.4%, giving a Diagnostic Odds Ratio (DOR) of 14.3 (Table 4).

Secondary stage

With the inclusion of 21 additional features, bringing the total available feature count to 

49, the Boruta feature selection algorithm identified two sets of features based on each 

of the two target classes (Table 3). Both sets had 16 features in common: four questions 

of the FAQ (“writing checks and paying bills”, “preparing paperwork”, “remembering 
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appointments/occasions”, and “driving or arranging transport”) plus its total score, the five-

word recall component of the MoCA and its total score, the informant-provided attention, 

language, and memory components and the self-report memory component of the QDRS-

like questionnaire plus its total, the verbal fluency task, the delayed component of the verbal 

learning task, the participant’s age, and hippocampal volume. Implementing the multi-model 

network enabled each class to be differentially targeted using features identified to best 

target that class, improving overall classification accuracy; when not-impaired subjects 

were targeted Trails A was included, and when impaired subjects were targeted Trails B, 

the orientation component of the MoCA, and the informant-provided “outside activities” 

component of the QDRS-like questionnaire were included.

As in the primary stage, additional thresholding analysis was performed after identifying 

hyperparameters for each model on 25% of the available training data. As screening for 

potential impairment is the goal of this model and not diagnosis, high sensitivity at the 

expense of specificity was again preferred. For the RF, LR, FFNN, and SVM models, a 

reduced threshold of 10% for positive-class (“impaired”) determination was identified, while 

the GBM model performed best at a further reduced threshold of 5% for positive-class 

determination.

For each of the two stages, all 25 combinations of the five model types were examined 

(Table 4). Performance metrics were calculated based on all 127 subjects in the test set, with 

exclusions in the primary stage appended to the second stage’s outputs. As each model’s 

primary stage selected different subjects for use in the second stage, metrics examining the 

second stage only are not comparable. For example, if a subject was incorrectly classified 

as not-impaired in the primary stage, that erroneous classification was included when 

calculating sensitivity metrics for the entire two-stage model.

Sensitivity was overall high across all models, with the best performing models correctly 

identifying 84 out of 86 impaired participants (97.7%) (Table 4). Specificity was highest 

when a GBM was used in the secondary stage, correctly identifying 53.7%–58.6% of 

not-impaired participants. The LR/GBM provided the best overall combination of processing 

speed, sensitivity (95.3%), and specificity (58.6%), with an AUC of 0.897 and F1 score of 

0.888; the only dual-stage model that exceeded this AUC was the RF/GBM model which 

suffered from overfitting. The LR/GBM model also had the best PPV (82.8%) and high NPV 

(85.7%) giving a DOR of 28.9.

Single stage with all features

Performance was also examined using a single-stage paradigm, where all participants were 

examined using only the second stage of the above model, with all available features. Across 

the board, performance metrics for the single-stage models were slightly better than the 

matched dual-stage models; for example, the GBM single-stage performed similarly to the 

GBM/GBM dual-stage model. The LR and SVM models achieved 100% sensitivity but with 

greatly reduced specificities (29% and 24%, respectively). Both the RF and FFNN models 

performed identically in a single stage to their paired two-stage model counterparts (RF/RF 

and FFNN/FFNN) (Table 4). However, the single stage models did not benefit from a prior 

screening stage and ran on all available participants.
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Misclassifications

In the well-balanced LR/GBM model, only four participants in the test set were 

misclassified as not impaired when they should have been screened positive. Only three 

were misclassified in the primary stage’s LR model, with one occurring in the secondary 

stage. Each of these misclassifications resembled healthy controls in all but their CDR, 

which ultimately guided their true diagnosis of MCI. These MCI patients had normal MoCA 

scores of 26.5 ± 2.6, which was similar to other HC patients scores (26.4 ± 2.6). The 

trail-making A scores of these misclassified patients (30.0 s ± 3.3 s) were more similar to 

HC (29.6 s ± 11.8 s) than MCI (34.8 s ± 11.9 s), and the mean score of the trail-making B 

task (62.5 s ± 23.8 s) was better than other HCs in the test set (70.6 s ± 22.7 s).

DISCUSSION

This study identified two parsimonious screening stages and explored the utility of a 

hierarchical screening procedure to identify potential cognitive impairment and exclude 

patients with normal cognitive functioning, minimizing costs and reducing assessment time 

for these patients that may otherwise be administered additional diagnostic procedures. 

Optimal parameters of implementation, including the selection of machine learning model 

algorithms for each stage, were also explored in-depth in this study. This two-pronged 

approach was trained on publicly available research data (ADNI) but tested on real-world 

patients of a memory clinic (CCBH), exhibiting high general clinical utility especially in the 

5-minute primary screening stage, and affording the ability to increase screening potential 

for specialists and clinical researchers in the second stage.

The primary stage identified mild impairment at a high sensitivity using a delayed verbal 

memory component (five-word recall), a situational awareness component (orientation), a 

visuospatial component (trails A) and a task-switching component (trails B), along with 

self-report questions concerning the individual’s memory and daily functioning. Additional 

components in the second stage further exclude healthy participants from further testing, 

at the cost of increased assessment time. It should be noted that the specific assessments 

identified in this study may not be required for optimal utility and may be able to be 

modified or replaced as needed with another assessment that captures similar functioning 

in order to decrease costs while maintaining efficacy; for example, the task-switching 

component identified by Trails B may be able to be replaced with a briefer task-switching 

assessment, e.g., the Number-Symbol Coding Task [46]. Additionally, in the second stage, 

the MRI component may be able to be replaced with another measure of ADRD pathology 

such as fluid or PET measurements of amyloid or tau [47]. A tool that captures each 

of these cognitive components, but not necessarily using the exact same assessments, 

may thus perform similarly well as the one described in this study. Ultimately, our 

findings are in line with previous research that has identified usefulness in identifying 

preclinical and prodromal impairment using demographics, neuropsychological assessments, 

and hippocampal volumetry [48].

The primary stage described in this study may function effectively as an intermediary 

between self-report screeners, which require no clinician time except interpretation, and 

brief screening assessments including the full MoCA and MMSE which require at least 10 
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minutes. The Mini-Cog is a very brief (three minute) assessment that contains assessment 

components similar to that identified in the primary stage: a three-word recall delayed 

memory component and an executive/visuospatial clock-drawing task. However, the Mini-

Cog does not incorporate task-switching, visuomotor speed, nor self-report measures.

Ultimately, while the procedure’s ability to identify current impairment was excellent, 

it had a tendency to misclassify cognitively normal patients as impaired even after the 

second stage. This was due to our prioritization of sensitivity over specificity in both 

stages to minimize missed identification of impairment while permitting healthy controls 

to be excluded following more in-depth testing; both stages are intended to screen for, not 

diagnose, impairment.

Model architecture

The primary stage of the model uses quick and easily administered assessments: the trail-

making test, the 5-word delayed recall and the orientation components of the MoCA, and 

a series of self-report questions including portions of the FAQ. This stage functions as 

an effective middle ground between purely questionnaire-based screening paradigms as in 

the QDRS [15] or FAQ [14] and brief performance assessments such as the MoCA [4] 

or MMSE [11]. Examining delayed memory (MoCA recall), attention (MoCA orientation), 

and both visuospatial and executive processing (trail-making) enables objective assessment 

of cognitive performance with minimal training required, and with all components able to 

be easily completed within five minutes; the MoCA’s five-word delayed recall component 

requires a five-minute delay, and both the trail-making and MoCA orientation components 

can be often completed within the delay portion. The self-report components of the primary 

stage can be completed by the participant prior to or alongside the visit, for example in the 

waiting room. The best performing model in this stage, the logistic regression, excluded 14 

cognitively normal patients from further screening in the second stage while erroneously 

excluding only three borderline MCI and no AD patients; thus, sensitivity was high, but 

specificity was low. Performance in this stage approaches or exceeds that of similar studies 

that prioritize cost savings and minimize assessment time [33, 36].

The model’s second stage introduces more in-depth assessments, including the verbal 

fluency (animal naming) task, a delayed narrative recall task, hippocampal volume from 

structural MRI, and informant-report questionnaires, altogether requiring a total of 30 

minutes of clinician time plus the collection of the structural MRI and the involvement of an 

informant such as a caregiver, spouse, or family member. As the primary stage effectively 

identified impaired patients, this second stage functioned to better identify healthy 

controls for further exclusion. The best performing model in this stage, the LightGBM 

gradient-boosted machine, excluded an additional ten cognitively normal patients and only 

misclassified a single borderline MCI case and no ADRD patients, resulting in a total 

sensitivity of 95.3% and specificity of 58.6% across both stages.

Of the MCI cases that were misclassified as cognitively normal in the CCBH test set and 

thus excluded from further analysis, all of them exhibited normal scores on a majority of 

neuropsychological tests; these cases displayed normal MoCA scores, and performed better 

than the average non-impaired patient on the Trailmaking task versions A and B. The criteria 
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for their diagnosis of MCI was guided by semistructured interviews with both the patient 

and an informant (the Clinical Dementia Rating), revealing subtle impairment that led to a 

diagnosis of MCI.

Model performance

The best performing models were found to be the combination of the LR for stage one and 

the GBM for stage two, as well as the model utilizing a FFNN for stage one and again 

using the GBM for stage two, both producing an overall AUC of 0.897 and the highest F1 

score of 0.888. Although in the primary stage both the LR and FFNN were found to perform 

relatively similarly (LR AUC: 0.874, FFNN AUC: 0.861), in practice when paired with the 

second stage the FFNN/GBM model required 1.41 seconds to run all participants while the 

LR/GBM model only took 422 milliseconds to run on our machine: an improvement of 

over three times. The FFNN was the slowest model component overall, and despite being 

one of the top performers it would not be appropriate in most contexts. Further, the RF 

models consistently overfit in the primary stage, classifying all participants as impaired and 

excluding none; using a RF in the primary stage was essentially the same as not having a 

primary stage at all.

Limitations

The diagnostic criteria used in both ADNI and CCBH were similar; however, they were 

not identical, and differences in borderline cases may have been present. Despite this, the 

strict separation of both datasets likely removed any potential source of bias resulting from 

these differences. While it was a strength that the testing set was entirely separate from the 

training set in terms of location, participant demographics, and procedure, it was a limitation 

that the test set only contained a relatively small number of samples: approximately 10% 

of the training set. Further, the balance of impaired to non-impaired participants was not 

equal between the training and testing sets; the ratio in the training set was approximately 

4:3 impaired to non-impaired, while the testing set was approximately 2:1 impaired to 

non-impaired. This was due to CCBH’s focus as a clinic open to the public, while ADNI 

had specific recruitment targets to fulfill their objectives of examining Alzheimer’s disease 

and cognitive impairment, including obtaining a representative sample of non-impaired 

participants. This may have also contributed to the false positives leading to overall low 

specificity in the test set: many controls in the test set entered CCBH with subjective 

complaints, potentially indicating underlying pathology that was not detected due to a lack 

of collection of biomarkers sensitive to prodromal impairment. Further, because both ADNI 

and CCBH used different assessments and criteria, we were required to conflate some 

features which may not have been directly comparable. In particular, while both datasets 

had a verbal learning component, ADNI’s Rey auditory verbal learning task and CCBH’s 

Hopkins verbal learning task were not identical. The Rey version used an additional two 

learning trials compared to the Hopkins and contained more words to recall, resulting in 

scores being significantly lower in ADNI than in CCBH even after standardizing for total 

word count (Table 2). This may have resulted in misclassification of healthy controls as 

impaired in the CCBH test set, as a similar score observed in the training set for participants 

with no impairment may have been the same observed in an impaired participant in the 

testing set.
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In this study, we used consensus diagnosis as the classification variable due to a focus 

on predicting and screening for cognitive disorders. However, many of the cognitive 

assessments and features used in our predictive algorithms may have also been used to 

determine consensus diagnosis, leading to an issue of circularity. One potential solution 

to this problem is to use a more objective measure of global impairment such as the 

CDR [36, 37]; however, the CDR would not be as useful for our goal of developing a 

screening paradigm. Nonetheless, future study should be mindful of this problem and seek 

to use independent and objective measures of impairment for classification variables where 

possible. In the second stage, the use of hippocampal volume from structural MRI, as well as 

requiring an informant or caregiver, adds complexity and may impact the use of this stage in 

clinical practice and research sites. However, the removal of these components significantly 

impacts both sensitivity and specificity, rendering the stage less effective overall. While 

self-report questionnaires are fairly accurate at identifying even very mild impairment [15], 

informant interviews are highly useful at determining subtle impairment in daily life, an 

important component of MCI [16, 49] and useful in ruling out non-impaired patients. 

Volumetric data from MRI is expensive and difficult to acquire, however future study may 

replace volumetric data with another biological measure, such as blood assays for dementia-

related proteins (e.g., amyloid-beta, phosphorylated tau) within either the primary- or 

secondary-stage screening procedure [50-52]. For this study, volumetric data was used both 

due to its availability within both datasets used as well as its validity as a neurobiological 

measure of ADRD. Interestingly, hippocampal volume was different between datasets, with 

volumes significantly higher in ADNI than in CCBH for cognitively healthy participants 

(Table 2). It is possible that the algorithms used to measure hippocampal volume differed 

between ADNI and CCBH; however, this is unlikely to be the only contributing factor. 

Future study should take to evaluate all metrics as uniformly as possible.

Conclusions

This study identified the utility of two-stage hierarchical decision support procedures and 

their ability to maximize screening potential while minimizing necessary costs, compared to 

a single model using the features of both stages. The development of the procedure revealed 

that a brief 5-minute assessment of delayed verbal memory, visuospatial and executive 

functioning, and attention along with self-report memory and IADL questions, is highly 

effective at identifying MCI and ADRD. Additional examination using the optional second-

stage of the procedure is able to further exclude non-impaired individuals. Additional 

optimization and validation using more diverse populations is needed, as is exploration of a 

more parsimonious second stage.
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Fig. 1. 
Flowchart of the hierarchical clinical decision-support system. Participants would be 

administered a streamlined, 5-minute assessment in Stage 1, of which the results would 

be entered into a clinical decision support system. The system would then recommend 

further testing in Stage 1 if it does not identify clear lack of impairment, followed by another 

assessment of patient data in the decision support system. If clear lack of impairment is 

again not identified, the patient would be referred for a full diagnostic workup and provided 

information about treatment and/or management.
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